15 research outputs found

    Recover Subjective Quality Scores from Noisy Measurements

    Full text link
    Simple quality metrics such as PSNR are known to not correlate well with subjective quality when tested across a wide spectrum of video content or quality regime. Recently, efforts have been made in designing objective quality metrics trained on subjective data (e.g. VMAF), demonstrating better correlation with video quality perceived by human. Clearly, the accuracy of such a metric heavily depends on the quality of the subjective data that it is trained on. In this paper, we propose a new approach to recover subjective quality scores from noisy raw measurements, using maximum likelihood estimation, by jointly estimating the subjective quality of impaired videos, the bias and consistency of test subjects, and the ambiguity of video contents all together. We also derive closed-from expression for the confidence interval of each estimate. Compared to previous methods which partially exploit the subjective information, our approach is able to exploit the information in full, yielding tighter confidence interval and better handling of outliers without the need for z-scoring or subject rejection. It also handles missing data more gracefully. Finally, as side information, it provides interesting insights on the test subjects and video contents.Comment: 16 pages; abridged version appeared in Data Compression Conference (DCC) 201

    SpatioTemporal Feature Integration and Model Fusion for Full Reference Video Quality Assessment

    Full text link
    Perceptual video quality assessment models are either frame-based or video-based, i.e., they apply spatiotemporal filtering or motion estimation to capture temporal video distortions. Despite their good performance on video quality databases, video-based approaches are time-consuming and harder to efficiently deploy. To balance between high performance and computational efficiency, Netflix developed the Video Multi-method Assessment Fusion (VMAF) framework, which integrates multiple quality-aware features to predict video quality. Nevertheless, this fusion framework does not fully exploit temporal video quality measurements which are relevant to temporal video distortions. To this end, we propose two improvements to the VMAF framework: SpatioTemporal VMAF and Ensemble VMAF. Both algorithms exploit efficient temporal video features which are fed into a single or multiple regression models. To train our models, we designed a large subjective database and evaluated the proposed models against state-of-the-art approaches. The compared algorithms will be made available as part of the open source package in https://github.com/Netflix/vmaf
    corecore